## Tuesday 21 June 2016 - Morning

## A2 GCE MATHEMATICS

## 4735/01 Probability \& Statistics 4

## QUESTION PAPER

## Candidates answer on the Printed Answer Book.

OCR supplied materials:
Duration: 1 hour 30 minutes

- Printed Answer Book 4735/01
- List of Formulae (MF1)

Other materials required:
Scientific or graphical calculator

## INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.


## INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [ ] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of 12 pages. The Question Paper consists of $\mathbf{4}$ pages. Any blank pages are indicated.


## INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

- Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Answer all the questions.
1 Ten archers shot at targets with two types of bow. Their scores out of 100 are shown in the table.

| Archer | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ | $G$ | $H$ | $I$ | $J$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bow type $P$ | 95 | 97 | 92 | 85 | 87 | 92 | 90 | 89 | 98 | 77 |
| Bow type $Q$ | 91 | 91 | 88 | 90 | 80 | 88 | 93 | 85 | 94 | 84 |

(i) Use the sign test, at the $5 \%$ level of significance, to test the hypothesis that bow type $P$ is better than bow type $Q$.
(ii) Why would a Wilcoxon signed rank test, if valid, be a better test than the sign test?

2 Low density lipoprotein (LDL) cholesterol is known as 'bad' cholesterol.
15 randomly chosen patients, each with an LDL level of 190 mg per decilitre of blood, were given one of two treatments, chosen at random. After twelve weeks their LDL levels, in mg per decilitre, were as follows.

| Treatment $A$ | 189 | 168 | 176 | 186 | 183 | 187 | 188 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Treatment $B$ | 177 | 179 | 173 | 180 | 178 | 170 | 175 | 174 |

Use a Wilcoxon rank sum test, at the $5 \%$ level of significance, to test whether the LDL levels of patients given treatment $B$ are lower than the LDL levels of patients given treatment $A$.

3 The table shows the joint probability distribution of two random variables $X$ and $Y$.

|  |  | $Y$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 |
| $X$ | 0 | 0.07 | 0.07 | 0.16 |
|  | 1 | 0.06 | 0.09 | 0.15 |
|  | 2 | 0.07 | 0.14 | 0.19 |

(i) Find $\operatorname{Cov}(X, Y)$.
(ii) Are $X$ and $Y$ independent? Give a reason for your answer.
(iii) Find $\mathrm{P}(X=1 \mid X Y=2)$.

4 The continuous random variable $Y$ has a uniform (rectangular) distribution on $[a, b]$, where $a$ and $b$ are constants.
(i) Show that the moment generating function $\mathrm{M}_{Y}(\mathrm{t})$ of $Y$ is $\frac{\left(\mathrm{e}^{b t}-\mathrm{e}^{a t}\right)}{t(b-a)}$.
(ii) Use the series expansion of $\mathrm{e}^{x}$ to show that the mean and variance of $Y$ are $\frac{1}{2}(a+b)$ and $\frac{1}{12}(b-a)^{2}$, respectively.
$5 \quad$ Events $A$ and $B$ are such that $\mathrm{P}(A)=0.5, \mathrm{P}(B)=0.6$ and $\mathrm{P}\left(A \mid B^{\prime}\right)=0.75$.
(i) Find $\mathrm{P}(A \cap B)$ and $\mathrm{P}(A \cup B)$.
(ii) Determine, giving a reason in each case,
(a) whether $A$ and $B$ are mutually exclusive,
(b) whether $A$ and $B$ are independent.
(iii) A further event $C$ is such that $\mathrm{P}(A \cup B \cup C)=1$ and $\mathrm{P}(A \cap B \cap C)=0.05$. It is also given that $\mathrm{P}\left(A \cap B^{\prime} \cap C\right)=\mathrm{P}\left(A^{\prime} \cap B \cap C\right)=x$ and $\mathrm{P}\left(A \cap B^{\prime} \cap C^{\prime}\right)=2 x$. Find $\mathrm{P}(C)$.

6 Andrew has five coins. Three of them are unbiased. The other two are biased such that the probability of obtaining a head when one of them is tossed is $\frac{3}{5}$.

Andrew tosses all five coins. It is given that the probability generating function of $X$, the number of heads obtained on the unbiased coins, is $\mathrm{G}_{X}(t)$, where

$$
\mathrm{G}_{X}(t)=\frac{1}{8}+\frac{3}{8} t+\frac{3}{8} t^{2}+\frac{1}{8} t^{3}
$$

(i) Find $G_{Y}(\mathrm{t})$, the probability generating function of $Y$, the number of heads on the biased coins.
(ii) The random variable $Z$ is the total number of heads obtained when Andrew tosses all five coins. Find the probability generating function of $Z$, giving your answer as a polynomial.
(iii) Find $\mathrm{E}(Z)$ and $\operatorname{Var}(Z)$.
(iv) Write down the value of $\mathrm{P}(Z=3)$.

7 A continuous random variable $Y$ has cumulative distribution function

$$
\mathrm{F}(y)=\left\{\begin{array}{cc}
0 & y<a \\
1-\frac{a^{5}}{y^{5}} & y \geqslant a
\end{array}\right.
$$

where $a$ is a parameter.

Two independent observations of $Y$ are denoted by $Y_{1}$ and $Y_{2}$. The smaller of them is denoted by S .
(i) Show that $P(S>\mathrm{s})=\frac{a^{10}}{s^{10}}$ and hence find the probability density function of $S$.
(ii) Show that $S$ is not an unbiased estimator of $a$, and construct an unbiased estimator of $a, T_{1}$ based on $S$.
(iii) Construct another unbiased estimator of $a, T_{2}$, of the form $k\left(Y_{1}+Y_{2}\right)$, where $k$ is a constant to be found.
(iv) Without further calculation, explain how you would decide which of $T_{1}$ and $T_{2}$ is the more efficient estimator.

## END OF QUESTION PAPER

Oxford Cambridge and RSA

## Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

